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Introduction
Any formal system for representing mathematics should address the two questions
of how to represent collections of mathematical objects and how to decide the laws of
identifications of these objects. These laws of identifications have become quite subtle.
While it has been clear for a long time that it is good mathematical practice to identify
isomorphic algebraic structures [11], or at least to use only notions and facts about
algebraic structures that are invariant under isomorphisms, category theory extends
this to the notion of categorical equivalences

1, which themselves have been general-
ized to higher forms of equivalences [25]. Voevodsky noticed that, by extending some
versions of dependent type theory with one further axiom – the univalence axiom –
one obtains a formal system in which all notions and operations are automatically
invariant under isomorphisms and even under higher notions of equivalence.

At the same time, Voevodsky showed the consistency of this axiom, by giving a very
sophisticated model in terms of so-called Kan simplicial sets, which have been used
for an abstract presentation of spaces in algebraic topology and homotopy theory. The
relevance of homotopy theory was suggested earlier by Grothendieck, who pointed out
the analogy between the laws of higher identifications in mathematics and homotopy
theory [25]. This model relies heavily on classical logic, while dependent type theory
was originally intended as a language for expressing constructive mathematics. It also
a priori relies on very strong logical principles – ZFC with a countable hierarchy of
inaccessible cardinals – which are much stronger than the ones needed for ordinary
dependent type theory [1]. Thus, two natural questions were first to describe exactly
the proof theoretic strength of the univalence axiom, and second to see if this axiom
could be explained in a constructive setting. These two questions have recently been
completely elucidated, as part of a general study of constructive presheaf models of
dependent type theory (with univalences). The goal of this article is to provide a survey
of these results. It is noteworthy that all of these results are developed in a constructive
metatheory, and that most of them have been formally checked in systems based on
dependent type theory [2; 9; 32; 35].

1. PRESHEAF MODELS OF DEPENDENT TYPE THEORY
1.1. Some notation
Since we want to present the models in a constructive setting, we shall use as meta
language a constructive version of set theory, the system CZFu<! [1]. This system has

1In this view for instance, the groupoid of all linear orders with a fixed finite number of elements, should be
identified with the trivial groupoid with one object and one arrow. Indeed in both groupoids there is exactly
one map between any two objects.
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a cumulative hierarchy of (a constructive version of) Grothendieck universes U0, U1, . . .
and it is straightforward to represent basic notions of category theory (and in partic-
ular presheaves) in this setting. However, it is possible – and this will be important
in one application below – to use as a metalanguage an “extensional” version of type
theory with a hierachy of cumulative universes, such as the system NuPrl. Actually,
presheaf models of type theory recently have been formalised elegantly in this system
by M. Bickford [9].

Most definitions can be given for presheaves over an arbitrary base category, which
we assume to be in the first universe, U0. We will denote by I, J,K, . . . the objects of
a given base category, and by f, g, . . . its morphisms. We write 1I : I ! I the identity
morphism, and fg : K ! I the composition of f : J ! I and g : K ! J . A presheaf A
is then given by a family of sets A(I) and restriction maps u 7! uf, A(I) ! A(J) for
f : J ! I, satisfying the laws u1I = u and (uf)g = u(fg) for f : J ! I and g : K ! J .

One will also need to talk about “subpresheaf”. This is usually done by introducing
⌦(I), which is the collection of sieves on I. A sieve on I is a set S of maps with codomain
I such that fg : K ! I is in S whenever f : J ! I is in S and g : K ! J . If 1I is in S,
then S is maximal (consists of all maps with codomain I) and will be denoted by 1. In
the constructive and predicative setting of CZFu<!, we replace ⌦ by the presheaf ⌦d,
where ⌦d(I) is the set of decidable sieves S (i.e., we can decide if a given f : J ! I is
a member of S or not). In this way, ⌦d(I) becomes a set (in the first universe U0) and
not a class. A subpresheaf of a presheaf A is given by a map A ! ⌦d, which for each I
selects in a coherent way a subset of the set A(I) of shape I defined by the “polyhedron”
A.

Any object I of the base category defines a presheaf Yo(I), represented by I. We de-
fine Yo(I)(J) to be the set of maps J ! I and the restriction maps are defined by
composition.

1.2. Motivations and Example
Presheaf models can be seen as a generalization of the notion of Kripke model [43]. In
[43], some “vivid” terminology from [30] is used: we think of a presheaf A as a “variable
domain”. For each I we have a set A(I). The maps f : J ! I give us transitions between
“stages” I and “later” stages J ; and each such transition “restricts” elements in A(I) to
elements in A(J) “along” the map f .

The intuition is temporal. One early use of presheaves however by Eilenberg and
Zilber [20] (indeed this was before the formulation of Kripke models) had some spatial

intuitions. Thinking of the objects I, J, . . . as basic “shapes”, we can think of A(I) as a
given set of objects of shape I. Eilenberg and Zilber suggested then an elegant abstract
and combinatorial representation of spaces as “complexes”. The idea is to define the
notion of “polyhedron” as a presheaf on a base category of given “shapes”.2 The notion
of “subpolyhedra” is then represented by subpresheaves,

A particular case is given by the presheaf of simplicial sets. The base category is the
category finite linear posets [n] = {0, . . . , n} and monotone maps. We write �n for the
presheaf represented by [n]. In particular �1 can be seen as an abstract representation
of the unit interval with two distinct global elements 0 and 1. We can think of �n as
an abstract representation of an n dimensional tetrahedron. The basic shapes are then
points, lines, triangles, tetrahedra, and so on.

2For Eilenberg and Zilber, the shapes were tetrahedra. This representation of complexes by presheaves was
used by D. Kan with two different notions of shapes: in [28] they are cubes, and in [29] they are tetrahedra.
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1.3. Language of dependent type theory for presheaf models
Dependent type theory has a natural semantics in presheaf models [35; 32; 26]. We
will only use this language in an informal way, and recall briefly the main operations.
This section can be seen as a generalization to the language of dependent types of the
semantics of simply typed lambda-calculus presented in the seminal paper of D. Scott
[43].

We work with presheaves on a given category. A type is interpreted as a presheaf
A: a family of sets A(I) with restriction maps u 7! uf, A(I) ! A(J) for f : J ! I. A
dependent type B on A is interpreted by a presheaf on the category of elements of A:
the objects are pairs I, u with u in A(I) and morphisms f : (J, v) ! (I, u) are maps
f : J ! I such that v = uf . A dependent type B is thus given by a family of sets B(I, u)
and restriction maps B(I, u) ! B(J, uf).

We think of A as a type and a dependent type B over A as a family of presheaves
B(x) varying with x in A. An element u in A(I) is thought of as an element of A defined
at “stage” I, and we can write B(x)(x = u) instead of B(I, u).

It is straightforward to define the operation ⌃(x : A)B(x). The set (⌃(x : A)B)(I) is
the set of pairs u, v with u in A(I) and v in B(I, u) and the restriction map is (u, v)f =
(uf, vf).

The operation ⇧(x : A)B(x) generalizes the semantics of implication in a Kripke
model. An element w of (⇧(x : A)B(x))(I) is a family of functions wf in ⇧(u 2
A(J))B(J, u) for f : J ! I such that (wf u)g = wfg (ug) if u in A(J) and g : K ! J . A
particular case is the exponential DA of two presheaves, since any presheaf D can be
considered as a constant family of types D over A defined by D(I, u) = D(I).

An example of presheaf is given by ⌦d where ⌦d(I) is the set of decidable sieves on I.
We have a dependent type [ ] for  : ⌦d where [ ]( = S) for S in ⌦d(I) is {tt | 1I 2 S},
where tt is a fixed object. The type [ ] is a subsingleton: if we have a and b of type [ ]
then a = b. The unfolding of this statement is the following: if S is a (decidable) sieve
on I and a, b are elements in {tt | 1I 2 S} then a = b. This is indeed the case (even if
the sieve S is not decidable) since then both a and b are equal to tt.

If A is a presheaf and  : A ! ⌦d we can form the subpresheaf A| of elements a
in A such that  a holds. The unfolding of this operation is that (A| )(I) is the set of
elements u in A(I) such that 1I is in the sieve  u.

If A is a presheaf, we can form A[ ] for  : ⌦d. For S a (decidable) sieve on I it can
be checked that (A[ ])( = S) is canonically isomorphic to the set of partial elements
of A defined on S: the set of families uf in A(J) for f : J ! I such that ufg = ufg if
g : K ! J . It is quite suggestive to see such a partial element u as a map from the
subsingleton [ ] into A. For instance, any a in A defines the element u = �(x : [ ])a.
This corresponds to the fact that any element a in A(I) defines a family uf = af in
A(J) for f : J ! I in S, which satisfies ufg = ufg = afg for g : K ! J .

We can use this to associate to any presheaf A the presheaf |A| of “partial elements”
of A, by defining |A| = ⌃( : ⌦d)A[ ]. An element of |A|(I) is given by a sieve S on I and
a family of elements uf in A(J) for f : J ! I in S such that ufg = ufg if g : K ! J . If
 , u is a partial element of A, we call  the extent of this partial element. Any element
a in A defines a “total” element (1,�(x : [1])a) of extent 1.

Working in the system CZFu<!, we have a hierarchy of universes Un in the underly-
ing set theory. We can then define Un(I) to be the set of Un presheaves over Yo(I). An
element of Un(I) is given by a collections of sets A(J, f) in Un for f : J ! I with restric-
tion maps A(J, f) ! A(K, fg) for g : K ! J . In general, a type at “stage” I is given by
a family of sets A(J, f), without restriction of sizes, for f : J ! I with restriction maps
A(J, f) ! A(K, fg). We can then define a partial type of size n to be an element in |Un|.
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Concretely, such an partial type at stage I is given by a sieve S on I and a family of sets
A(J, f) in Un for f : J ! I in S with restriction maps A(J, f) ! A(K, fg) for g : K ! J .

2. MODELS OF UNIVALENCE
We now explain how to build a model of type theory with the univalence axiom inside
a presheaf model given two presheaves satisfying some special conditions. This step is
similar to an inner model construction in set theory. This is inspired from Voevodsky’s
simplicial set model, but carried out in a a constructive metatheory. As we shall see,
this approach requires a special property of the interval (the interval should be “tiny”),
which does not hold for simplicial sets. (The usual description of the simplicial model
cannot be carried out in a constructive framework, as shown [7; 36], and it is not known
at this point if there is another constructive description of this model.)

The model is parametrised by two special presheaves: a subpresheaf F of ⌦d (which
will classify cofibrant maps) and a presheaf I which is a formal representation of the
interval. The subpresheaf F corresponds to a map Cofib : ⌦ ! ⌦, so that F can be seen
internally as the subpresheaf of propositions  in F satisfying the property Cofib( )
(which reads “ is cofibrant”).

2.1. Properties of Cofib
The axioms for Cofib, as isolated in [35], are reminiscent of the ones used for synthetic
topology [21] and synthetic domain theory [40] (with only formal connections at this
point however). These are

— (A1) The predicate Cofib should define a dominance, i.e. cofibrant maps should contain
isomorphisms and be closed under composition, which can be expressed by Cofib(1)
and Cofib(9(u : [']) u) whenever Cofib(') and Cofib( u) for u : ['].

— (A2) F is closed under disjunction: Cofib( 1 _  2) if Cofib( 1) and Cofib( 2).

2.2. Properties of I
— (B1) The presheaf I has two global elements 0 and 1 that are distinct (i.e. we have

¬(0 = 1) in the internal logic [43] of the presheaf model)
— (B2) I(J) has a decidable equality for each object J
— (B3) I is tiny, i.e. the path functor X 7! XI has a right adjoint
— (B4) I has connections

The last condition means that we have two binary operations ^ and _ on I satisfying
x^ 0 = 0^ x = 0 and x^ 1 = 1^ x = x and x_ 0 = 0_ x = x and x_ 1 = 1_ x = 1. These
operations can be seen as formal minimum and maximum operations.

This presheaf I is used to represent the type of paths, so that if a0 and a1 are in A,
then Path A a0 a1 is the type of elements ! : AI such that !(0) = a0 and !(1) = a1.

Note that the property (B2) implies that the equality i = j is in ⌦d for all i and j in
I.

The condition (B3) appears in the setting of synthetic differential geometry [30] (but
there also, the connections may be only formal), and plays a crucial rôle in defining the
universe of “fibrant” types.

2.3. Conditions mixing I and F
— (C1) For all i in I we have Cofib(i = 0) and Cofib(i = 1).
— (C2) We have Cofib((8i : I) ) if 8(i : I)Cofib( ).

The second condition appears in the setting of synthetic topology and expresses that
I is compact [21] (which is appropriate since I is supposed to represent the unit in-
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(A1) Cofib should define a dominance

(A2) Cofib is closed by disjunction
(B1) The presheaf I has two global elements 0 and 1 that are distinct
(B2) I(J) has a decidable equality for each object J
(B3) I is tiny

(B4) I has connections
(C1) 8(i : I) Cofib(i = 0) ^ Cofib(i = 1)
(C2) Cofib((8i : I) ) if 8(i : I)Cofib( )

Fig. 1: Conditions on I and Cofib

terval). Another formulation of this condition (noticed by Ch. Sattler) is that the path
functor X 7! XI preserves cofibrations.

These conditions are collected in figure 2.3.

2.4. Some laws of identification and fibrations
Our method to build this model is to interpret the equality type as the path type,
defined above using the interval I. For instance, the reflexivity of equality holds, since
we have the constant path 1a = �(i : I)a which is element of type Path A a a for any a
in A.

Another law of identification that is valid at the abstract level and that uses the
connections on the interval (B4) is that for any type A and any element a in A the type

T = ⌃(x : A)Path A a x

satisfies the following property: we have an element (a, 1a) in T and there is a path
from this element to any other element (x,!) in T . Indeed the path ✓ = �(i :
I)(!(i),�(j : I)!(i ^ j)) satisfies ✓(i) : T for all i and ✓(0) = (a, 1a) and ✓(1) = (x,!).

To have such a path is fundamental both in type theory [34], and in homotopy theory,
since it was exactly this basic fact that, according to J.-P. Serre himself [45], was at the
origin of the loop space method in homotopy theory [44].

The problem comes with the principle of “substituting equal for equal”, expressed in
type theory. If A is a dependent type over �, it should be the case that given a path �
in �I we should at least have a transport function A�(0) ! A�(1). Such a function does
not need to exist however in general3.

We then try to find an operation at least as strong as having a transport, and which
is furthermore closed under all operations of our type theory: dependent products and
sums, path types, and the universes.

Such an operation is the following. It can be seen as a subtle refinement of the path
lifting property (any path in � can be lifted to a path in A), and has been isolated in
homotopy theory [18].

Definition 2.1. A filling operation for a dependent type A over a context � is an
operation which, given a path � in �I and a cofibrant proposition  in F, extends any
partial section in ⇧(i : I)[ _ i = 0] ! A�(i) or in ⇧(i : I)[ _ i = 1] ! A�(i) to a total
section in ⇧(i : I)A�(i).

Note that we can define internally a type Fill(�, A) of all filling operations for A.
If  = 0 then we get exactly the two path lifting operations, which given a path � in

the base � and a starting (resp. ending) point in A�(0) (resp. in A�(1)) lifts this path to
a path in ⇧(i : I)A�(i).

3For instance, if we take � = I and � = 1I, and we define A(J, r) = 1 for r = 0 and A(J, r) = ; if r 6= 0 then
there is no function of type A�(0) ! A�(1).
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This refinement can be seen as a formulation of the following principle of homotopy

extension property emphasized by Eilenberg [18; 19]4.
PROPOSITION 2.2. If A is a subpolyhedron of B, given two homotopic functions

f0 f1 : A ! X and an extension f 0
0 : B ! X of f0, there is an extension f 0

1 of f1 ho-

motopic to f0.

In the case � is the unit context 1, the type A is a global type and an element of
Fill(1, A) extends a partial section in ⇧(i : I)A[ _i=0] (resp. ⇧(i : I)A[ _i=1]) to a path in
AI. We let Fib(A) be the type of such extension operations. Note that we cannot identify
Fill(�, A) with ⇧(⇢ : �)Fib(A⇢): to be pointwise fibrant is in general weaker than to have
a filling operation5. The filling operation is expressed as a type over the path context
�I and not over the context �.

We define a composition operation for a dependent type A over a context � as an
operation cA which, given a path � in �I, a cofibrant proposition  in F and a partial
section u in ⇧(i : I)[ _ i = 0] ! A�(i) (resp. ⇧(i : I)[ _ i = 1] ! A�(i)), produces an
element cA �  u in A�(1) (resp. A�(0)) such that  ) u 1 tt = cA �  u (resp.  )
u 0 tt = cA �  u). Let us write Comp(�, A) the type of all composition operations on A.
Any filling operation fA defines a composition operation by taking cA �  u = fA �  u 1
(resp. cA �  u = fA �  u 0) and this provides a map Fill(�, A) ! Comp(�, A). Using
connections (property B4 of the interval) we can show the following.

PROPOSITION 2.3. The map Fill(�, A) ! Comp(�, A) has a section.

This is convenient since it is sometimes easier to define a composition operation than
a filling operation (this will be the case for dependent products and for universes).

We can define a contractibility structure Contr(T ) of a type T . An element of Contr(A)
is an extension operation that extends any partial element in ⌃( : F)T [ ] to a total
element. A contractibility structure for a dependent type A over � is then an element
of ⇧(⇢ : �)Contr(A⇢). (Thus, in contrast, with the filling operation, a contractibility
operation for a family over � is expressed by a type over � itself.)

Before dealing with the representation of universes, there is a further operation that
can be expressed internally, and that plays a crucial rôle in showing that the universes
themselves are fibrant and univalent.

PROPOSITION 2.4. We can build an operation of type ⇧(A : Un)Contr(⌃(T : Un)(T !
A)) which takes a partially defined function T : Un, u : T ! A with codomain A and

extends it to a totally defined function.

2.5. Universes of fibrant types
We now define a universe of fibrant types. It should be a global object Un such that
there is a natural isomorphism between the set of maps � ! Un and the set of pairs
A, fA where A : � ! Un and fA is an element of Fill(�, A). (This is expressed by the
fact that Un should classify the family of types over � with a given filling structure.) It
would be wrong to define it as ⌃(X : Un)Fib(X) since this would only classify families
of types that are pointwise fibrant. The problem comes essentially from the fact that
the filling operation for a family A over � is expressed by a type T (A) over �I and not
over a type over �. While analysing how this definition works in some special cubical
model we found with Ch. Sattler [17] that a sufficient condition for this is the condition

4In the Bourbaki’s notes on homotopy by Eilenberg, 1951, it is written that proofs of basic results about
homotopy “can be obtained quite neatly by repeated, and sometimes tricky, use of this general lemma”.
5For instance if we define a dependent type A over I by taking A(J, r) = ; if r 6= 0 and A(J, r) = 1 if r = 0
then Fill(I, A) is empty, since we don’t have a transport function A0 ! A1, but we do have ⇧(⇢ : I)Fib(A⇢).
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(B3) on the interval: the path functor X 7! XI has a right adjoint. This is equivalent to
the fact that this functor preserves small colimits and it implies a dependent right ad-
joint operation: given T over �I we can find Rd(T ) over � with a natural isomorphism
between Elem(�, Rd(T )) and Elem(�I, T ). It is then possible to express the filling opera-
tion as the type C(A) = Rd(T (A)) over �, and this filling operation then can be seen as
a map C : Un ! Un. The universe of fibrant types (of size n) can be defined simply as
⌃(X : Un)C(X), and we can re-express the closure operations as operations of types

⇧(A : Un)⇧(B : A ! Un)C(A) ! (⇧(x : A)C(B x)) ! C(⇧ A B)
⇧(A : Un)⇧(B : A ! Un)C(A) ! (⇧(x : A)C(B x)) ! C(⌃ A B)
⇧(A : Un)C(A) ! ⇧(a0 a1 : A)C(Path A a0 a1)
C(⌃(x : Un)C(X))

To build these operations is actually straightforward, except for the universe; the
only subtle point is closure under dependent products, which relies on the connection
and Proposition 2.3. For the universe, this also relies on Proposition 2.3 and on a re-
finement of Proposition 2.4 (“equivalence extension operation”) which expresses that
the extension provided by Proposition 2.4 of an equivalence is an equivalence. It is ex-
actly (and only) at this point that we need to use the property (C2) of the interval (the
fact that the interval is “compact”).

Using these operations, we can build a new model of type theory where a type is
given by a pair A, cA of a presheaf A and an element of type C(A). An element of this
type is simply an element of A. This model satisfies equivalence.

The definition of universes we have presented cannot be done internally, in contrast
with the description of all other operations of type theory (dependent products and
sums, and path). Indeed, it is crucial to express the existence of the right adjoint of the
path functors externally, since to express it internally6 leads to a contradiction [32].

If we extend type theory with suitable modalities, it is however possible to express
in this extension that some facts hold only at a global level. This is what has been
achieved in the work [32], which could in this way checks formally the correctness of
the definition of universes. Together with the previous work [35], this provides a formal
check of the correctness of presheaf models of type theory with the univalence axiom
from the conditions listed in figure 2.3.

2.6. Identity types
The models we have presented so far model exactly the rules of identity elimination
as presented by Martin-Löf [34]. The problem essentially is that these rules express
that the path lifting of a constant path has to be constant, but there is nothing that
enforces this in our presentation.

This problem was solved by A. Swan [46] using ideas from homotopy theory. We
present here an adaptation of this idea, which becomes especially simple in the kind
of models we consider. We define Id A a b to be the type of pairs  ,! with  in F and !
in Path A a b such that  ) const(!) where const(!) is defined to be 8(i : I)!(i) = !(0)
and expresses that ! is constant. The reflexivity proof 1,�(i : I)a is then an element in
Id A a a. If  ,! is in : Id A a b and we have a family of type P over A with an element
in Fill(A,P ) and u : P a then we can use the element in Fill(A,P ) to extend the map

w : ⇧(i : I)[ _ i = 0] ! P (! i) w i x = u

to a section s in ⇧(i : I)P (! i) that satisfies  ) s 1 = u. With this simple modification,
we get an interpretation of all rules of identity types as introduced by Martin-Löf [34].

6In the form: we have R : Un ! Un with a canonical isomorhism between AI ! B and A ! R(B).
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2.7. Examples
The right adjoint condition (B3) is satisfied as soon as I is representable and the base
category has binary products. This includes the Lawvere category of distributive lat-
tices, or de Morgan algebras [14], or even of Boolean algebras. We get in this way a
large class of models of type theory with univalence. Such Lawvere categories have a
syntactical presentation, and it is then possible to give a syntactic presentation of the
corresponding models of type theory, as done e.g. in [14]. (This point was emphasized
in Voevodsky’s talk [52].) An important result relating these models is the canonic-
ity result [27]: any closed term in Nat (maybe using univalence) is convertible to a
numeral.

An example where all conditions hold except for the condition (B3) is provided by
simplicial sets with the canonical choice I = �1. If the path functor X 7! XI had a
right adjoint, then it would preserve colimits, but it can be checked that this is not the
case for I = �1.

2.8. Variations
A possible variation is to take away the condition B4 on the interval (connections) and
to strengthen the condition C1 as 8(i j : I)Cofib(i = j). The notion of filling structures
for a type A over � is then changed to an operation that, given � in �I and k in I and
 in F, extends any partial section in ⇧(i : I)[ _ i = k] ! A�(i) to a total section in
⇧(i : I)A�(i).

Then it is possible to show that with these changes, we still get a model of type theory
with a cumulative hierarchy of univalent universes. The fact that we get univalent
universes in this way was discovere in [5]. This has even been formally checked in [2].
A type system in the style of NuPrl corresponding to this model is developed in [3; 4;
5].

2.9. Refinement
The model extends directly to inductive data types. For instance the type W(x : A)B
which has for constructors sup a u with a in A and u in B(a) ! W(x : A)B has a direct
interpretation in presheaf models, and it can be checked that we have

C(A) ! (⇧(x : A)C(B)) ! C(W(x : A)B)

The paper [15] explains how to extend the semantics to higher inductive types [48].
(Note that it is not clear at this point if a semantics of higher inductive types can be
given in the simplicial set model. Maybe this is possible using the techniques presented
in [15].)

3. APPLICATIONS
3.1. Application 1: proof theoretic strength
As explained above, we can take as meta language the system CZF extended with a hi-
erarchy of universes [1], or the system used for the proof system NuPrl. (For the latter
choice, it should be mentioned that M. Bickford has actually checked the correctness
of the cubical type theory presented in [14] in the system NuPrl.) These systems are
known to be of the same proof theoretic strength as pure dependent type theory with
dependent products, sums, universes and W-types (and no identity types) [1]. Hence,
we can state:

THEOREM 3.1. The addition of axiom of univalence and higher inductive types does

not increase the proof theoretic strength of dependent type theory.
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It follows e.g. that the provably total functions N ! N are the same in all these
systems.

3.2. Application 2: impredicative universes
Instead of NuPrl, we could work in an extensional type theory (with the so-called equal-
ity reflection rule) and with an impredicative universe, i.e. a universe U that satisfies
⇧(x : A)B is of type U if B is of type U for x in A, for any type A. It is known how to
build models of such a system [33]. Starting from such a type theory, we obtain a model
of a type theory with an impredicative univalent universe. This was achieved recently
in the work [49].

It then is possible to give a semantics model for the various direct elegant impred-
icative definitions of higher inductive types described in [6]. For instance, while it is
well-known since the work of Reynolds [37] that we can represent the type of natural
numbers as a subtype of ⇧(X : U)(X ! X) ! (X ! X), one can represent the circle in
a similar way as a subtype of ⇧(X : U)⇧(b : X)(Id X b b) ! X. One also can represent
the type of integers as a subtype of ⇧(X : U)(Equiv X X) ! (X ! X).

3.3. Application 3: independence and consistency results
We have explained how to build presheaf models of type theory, starting from a base
category C and presheaves I and F satisfying the conditions of figure 2.3. As noticed in
[35], Corollary 8.5, these conditions are always satisfied if the base category has finite
products, I is representable and we take F = ⌦d. This is the case if the base category C
is the Lawvere theory of distributive lattice for instance.

In this way, we obtain a model of type theory with a cumulative hierarchy of univa-
lent universes (and higher inductive types [15]).

Given another category with finite product D, if we change the base category with
C ⇥D and redefine the interval as Ĩ(J,X) = I(J), still taking cofibrant maps classified
⌦d, we get a new model of type theory which can be thought of as a Kripke model, with
worlds as objects of D, over the previous model.

The interest of this operation is that we can have a site structure on the category
D and this site structure can give rise to a non trivial (internal) family of left exact

modalities as considered in the paper [38]. The objects modal for all these modalities
[38] form then a new model of type theory with univalences. This can be seen as gen-
eralizing the internal description of sheaves in a presheaf model.

For instance, if we take for the base category the poset of clopen (simultaneously
closed and open) subsets of Cantor space, with its canonical notion of covering, we
obtain a generalization of the model presented in [16], and we obtain the following
result.

THEOREM 3.2. There is a model of type theory with a hierarchy of univalent uni-

verses which validates the negation of Markov’s Principle.

Using the space [0, 1] as in [16], we get similarly.

THEOREM 3.3. There is a model of type theory with a hierarchy of univalent uni-

verses and higher inductive types which validates the negation of countable choice.

Finally, using the opposite of the category of Boolean algebras with decidable equal-
ity we obtain:

THEOREM 3.4. There is a model of type theory with a hierarchy of univalent uni-

verses and higher inductive types which validates Brouwer’s principle of uniform con-

tinuity for functions 2N ! N.
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3.4. Application 4: Quillen model structures
Given a presheaf model with presheaves I and F satisfying the conditions of figure 2.3,
we have a class of cofibrations, that are the maps classified by F. Any map u : A ! B
can be seen as defining a dependent type F over B, by taking F (I, b) for b in B(I) to be
the set of elements a in A(I) such that u a = b. We define this map to be a fibration if
we have a global element in Fill(B,F ). This can be expressed as a right lifting property,
in the style of abstract homotopy theory as presented in [13; 39; 24; 22]. Similarly such
a map u is defined to be a trivial fibration if we have a global element in Contr(B,F )
or, equivalently, the map u has the right lifting property w.r.t. any cofibration.

Using the property A1 of Cofib (dominance) one can for instance show the following:

PROPOSITION 3.5. A map is a cofibration if, and only if, it has the left lifting prop-

erty w.r.t. any fibration.

Using the techniques explained in [47; 15], it is possible to factor any map u in the
form u = pi where i is a map having the left lifting property w.r.t. any fibration and
p is a fibration. Following [41], we can define the map u to be a weak equivalence if
the map p is a trivial fibration. Using in a crucial way the fact that we have fibrant
universes of fibrant types, we can then, following Section 2 of [41], show that the three
class of maps fibrations, cofibrations, and weak equivalences that we have defined form
a Quillen model structure [39] on the presheaf category. Note that these arguments
can all be carried out in a constructive meta theory.

In a classical framework, we can take F = ⌦ and it is interesting to compare this
model structure with the so-called “Cisinski” model structure [13] that we obtain from
a presheaf I having two distinct global objects. These two model structures have the
same fibrant objects and same cofibrant maps. It follows then from a result of A. Joyal
(presented e.g. in [39], Theorem 15.3) that these two model structures coincide. As an
application, we can state (which can be seen as an application of dependent type theory
to abstract homotopy theory):

THEOREM 3.6. Given any presheaf model with an interval I satisfying the condi-

tions of figure 2.3 (with F = ⌦) the corresponding Cisinksi model structure is complete
in the sense of [13].

In the case where the base category is the Lawvere theory of distributive lattices or
de Morgan algebras, there is a canonical geometric realization map from presheaves to
topological spaces, which associates to I the real unit interval [0, 1]. A natural question
is whether this functor sends a weak equivalence to a weak homotopy equivalence [24;
39]. Ch. Sattler has shown that this is not the case for de Morgan algebras: if we take
the quotient L of I by the involution of de Morgan algebra, the geometric realization of
L is a contractible space, but the map L ! 1 is not a weak equivalence. An important
open problem is whether this holds in the case of distributive lattices. Maybe it is
not possible to capture in a constructive framework the notion of equivalence of the
classical model structure on topological spaces.
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