The Three-HITs Theorem

Andrej Bauer*! and Niels van der Weidef?

1 University of Ljubljana, Slovenia
Andrej.Bauer@andrej.com

2 iCIS, Radboud University, Nijmegen, The Netherlands
nweide@cs.ru.nl

—— Abstract

We show that all higher inductive types can be constructed from coequalizers, path coequalizers

and homotopy colimits. The proof is inspired by Addmek’s theorem which constructs inductive
types as a colimit of a functor. This way one can reason about all higher inductive types by
instead studying a small number of examples.

1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases homotopy type theory, higher inductive types, category theory

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Higher inductive types (HITS) generalize normal inductive types by allowing constructors
for both points and paths, rather than just for the points. While an inductive type is freely
generated from a signature, a higher inductive type is freely generated from a signature
together with constructors for equations. Numerous examples and definitions of such types
have already been given in the literature [3, 6, 8, 24, 25], but a definition with a good
metatheory is still lacking. As a step towards that goal, we simplify the definition given in
[8] bringing it closer to the intuition and the intended meaning.

Philosophically, one sees an inductive type as a type ‘which is built step by step’. Starting
with the nonrecursive constructors, new terms are made by applying recursive constructors
to previously built terms. This is explained by the fact that inductive types are initial
algebras for a functor [16, 17] and that such algebras are obtained by fixed point iteration
[2]. Following our intuition on higher inductive types, one would expect that they can be
constructed in a similar fashion. However, since equations are also allowed in the specification,
identifications need to be made during the construction.

The goal of this paper is to formally justify this idea by showing that the higher inductive
types defined in [8] can be generated from three specific higher inductive types, namely
coequalizers, path coequalizers, and homotopy colimit. More concretely, we will prove the
following theorem.

» Theorem 1 (Three-HITs Theorem). In Martin-Lif type theory extended with a coequalizers,
path coequalizers and homotopy colimits, we can interpret each higher inductive type from [8].

The author acknowledges the financial support from the Slovenian Research Agency (research core
funding No. P1-0294) at Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia. This
material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF under Award No. FA9550-14-1-0096.

t This work was partially supported by EU COST Action Eutypes (CA15123).

© Andrej Bauer and Niels van der Weide;

licensed under Creative Commons License CC-BY
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1-23:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2

The Three-HITs Theorem

This means that for each HIT we can define a type with the same introduction, elimination
and computation rules.

Also, this generalizes the results in [15, 19, 20] where the result is showed for truncations.
With this result the metatheory of higher inductive types could be simplified significantly,
because rather than a general class, one only needs to check metatheoretical properties for
three HITs.

In Section 2 we shall recall some of the required material for this paper. More concretely,
we give the syntax of higher inductive types, and using that we define required types. Next
we define the approximating sequence of a higher inductive type in Section 3, and in Section
4 we show that the colimit of this sequence satisfies the rules of the given HIT. For this we
need some lemmata which are proved in Section 5. These are formalized in CoQ [10] using
the library from [9].

2 A definition of HITs

In this section we provide the definitions of higher inductive types that we shall consider.
We recall the scheme for specifying higher inductive types from [8].

» Definition 2. A polynomial (expression) in a type variable X is a built inductively from
the variable X, type constants C, binary products X, and binary sums +.

For example, if N is the type of natural numbers, the expression (X + N) x X is a
polynomial expression in X. We write P[X] to indicate a polynomial in variable X. Given a
type A, we may substutute A for X to obtain a type P[A], as follows:

X[A] = A, (P1 X Pg)[A} =P [A] X PQ[A],
In a similar fashion a map f: A — B is transformed to a map P[f] : P[4] — P[B]:
X[f1=1 (P x P)[f] (z,y) := (PAlf] 2, P2[f]y),
Clf] = ide, (Pr + P)[f](inlz) := inl (P1[f] 2),
(Pr + Pp)[f](inry) := inr (P2[f]y).

Somewhat less obviously, a polynomial acts on a type family B : A — TYPE to give its lifting
P[B] : P[A] — TYPE,

Y[B]UE Bu, P1 XPQ[B] = (Pl[B]u) X (Q[B} ’LL),
C[Blu:=C, Py + Py[B] (inlu) := P[B]u,
Py + Py[B] (inru) := P3[B]u,

fu Py x By[f] (ur,u2) := (Py[f]ur, Pa[f]uz2)
u Py + B[f] (inlu) := P[f]u,
Py + By[f] (inru) := P[f] u.

There is of course a strong analogy between the action of P[X] and a polynomial functor,
but we hesitate to call P[X] a functor as there is no category to speak of, and in any case
the manipulations we have just described are syntactic.

Next we define the notion of a constructor term.

A. Bauer and N. van der Weide

» Definition 3. Given a function ¢: AT — T with A a polynomial and T a type, we say t
is a constructor term over c if we can find polynomials F and G such that z: FT +t:GT
can be derived using the following rules.

t: B T does not occur in B v: FTkFHr: AT
z:FTHt: B z: FTHax: FT z: FTkcer:T

je{1,2} 2: FTHr:GiTxGT jed{l,2} z:FTkr;:Gj
e FThmjr:G; T x: FTHE(r1,re):GiTx G2 T

je{l,2} z: FTkEr:G;T
x: FTEHingr:GiT+GT

Using constructor terms we give the following scheme of higher inductive types.

» Definition 4. A higher inductive type is defined according to the following scheme
Inductive H :=

| c:AH— H
| pi: [[(z:B: H),ti =7 (i=1,...,m)

where A and each B; are polynomials, and each t; and r; are constructor terms over ¢ of
type H with x : B; H as variable.

Before we can give the rules for higher inductive types, we need to define the lift of a
constructor term.

» Definition 5. Given is a constructor ¢c: A H — H, a type family Y : H — TYPE, and a
term f:[[(xz: AH),AY x — Y(cz). For a constructor term z : F H 7 : G H we define
the lift 7 of r with type « : F H h, : FY -7 : GY r by induction in r as follows.

ti=t Z:=hy Gri=f;rr
— o~ — -~ A~ ./\ ~
Tri=m 7 (r1,7r2) = (r1,72) in; r:=7r

With all these notions we can give the introduction, elimination and computation rules
of higher inductive types. The introduction rules for H as given in Definition 4 are

c:AH — H,
Di H(x :B; H),t; = ;.
We also have an elimination rule for which we use the lifting of constructor terms.
FY :H — TYPE
Ff:[l(z:AH),AY 2 =Y (cx) Fqi:[1(x: Bi H)(hy : Bi Y @),8 =p, 0 T
F Hrec(f,q1,-..,qn) : [[(z: H),Y x

Let us abbreviate Hrec(f,q1,-..,qn) by Hrec. The type H also has computation rules for
each point t : A H

Hrec (ct) = ft (A Hrec t),
and for each a : B; H
apD Hrec (p; a) = q; a (B; Hrec a).

Note that these equalities are definitional rather than propositional.
Let us now give some examples of higher inductive types which will be crucial in this
paper. The first one identifies points in some type, and we call it the coequalizer.

23:3

CVIT 2016

23:4

The Three-HITs Theorem

Inductive coeq (A, B : TYPE) (f,g9: A — B) :=
| inC:B—coeqABfg
| glueC : [](a: A),inC (fa)=inC (ga)

The elimination rule for this type is as follows

FY :coeqAB fg— TYPE
Fiy : [](b: B),Y (inCb) Fgy :[[(a: A),glueC,(iy (f a)) =iy (g a)
F coeqrec(iy, gy) : [[(z : coeq AB fg),Y x

Note the similarities with the definition of the coequalizer in category theory [22].
Next we define a type which identifies two paths in some type which we shall call the
path coequalizer.

Inductive pcoeq (A, B: TYPE) (p: A — > (b1,b2 : B), (b1 = b2) X (b1 = b2)) :=
| inP: B — pcoeq AB fg
| glueP : [J(a: A),ap inP (m1(ms(p a))) = ap inP (m2(7s3(p a)))

We will abbreviate p; a = m;(m3(p a)) for ¢ = 1,2. Note that this type has 2-paths, so it does
not follow the given syntax. Furthermore, the identified paths used in the parameter are
obliged to have the same endpoints. The introduction and computation rules are as expected,
but we will give the elimination rule.

For the elimination rule we first need a lemma.

» Lemma 6. Given is Y : pcoeq — TYPE and iy : [[(b: B),Y(inPb). Then we have a term
coh : [J(a: A), (m1 a)2" Y iy by) = (2 a)2™ 7 iy by)
Proof. For this we need to prove that for all type families Y : A — TYPE, maps f: A — B,

points z : Y(f a), and paths p : a = b we have

Az, Y (f)
*

tc:p z=(ap fp) =

This can be proven with path induction. Now we have the following equalities

(1 a)2 Y PV (34 b1) = (ap inP p1)Y (iy by)
= (ap inP p2)Y (iy by)

— (7T2 a/)i\b, Y(inPb) (’LY bl)

The first and the last follow from tc, and the second from glueP. <

Now we give the elimination rule of pcoeq for which we use coh.

FY :pcoeq AB fg— TYPE
Fiy : [[(b: B),Y (inPb) Fgy : [[(a: A),coh ™ eapD iy (p; a) = apD iy (ps a)
F pcoegrec(iy, gy) : [[(x : pcoeq AB f g),Y x

The last HIT we need is the homotopy colimit, and for that we again are inspired by the
definition from category theory.

Inductive hocolim (F : N — TYPE) (f: [[(n:N,Fn— F(n+1))) :=

| inc: [[(n:N),Fn— hocolim F f
| com: [[(n:N)(z: Fn),incnz=inc(n+1)(fnz)

A. Bauer and N. van der Weide

Now the elimination rule is as follows.

FY :hocolim F f — TYPE
Fiy :[[(n:N)(z: Fn),Y (incnz)
Fey :[[(n:N)(z: Fn),com.(iy nz) =iy (n+1) (fnx)
F hocolimrec(iy, cy) : [[(x : hocolim F' f),Y z

Lastly, we need function extensionality for the proof. Let us first introduce some notation.

» Definition 7. Let A, B be types, let f,g: A — B be maps, and let x : A be a point of A.

Then for all e : f = g we define a path ez : f x = g x using path induction which sends
refl to refl.

» Definition 8. Given are types A, B and two maps f,g: A — B. Then we define the type
FunExt, of which the inhabitants represent proofs of function extensionality, as follows

FunExt:(H(x:A),fx:gx)%f:g.

We will assume that we have an inhabitant FE : FunExt such that for p : [[(z : A), fa = gx
and x : A we have

(FEp) Oz =pu.

In homotopy type theory function extensionality can be proved by assuming univalence [21]
or by assuming the existence of an interval object [23].

3 The Approximator

Let us assume that some higher inductive type H is given. In order to construct H as a
colimit, we first need to give the approximations in the colimit, and for that we define the
approximator.

Before giving the definition, let us acquire inspiration by looking in more detail at how
an inductive type is constructed. Such a type T is defined by a constructor ¢ : AT — T with
A polynomial. Equivalently, we can define the type T with a signature which is a polynomial
functor A, and then by Addmek’s theorem T is the following colimit.

0—— A0—— A(A0) —— ...

To understand what this does, let us assume that A X =1+ X, so that T'= N. This means
we have two inclusions 1 —— 1+ X and X —— 1+ X , and we call them 0¢c and S¢

respectively. At every step we formally add for each x : X a successor S¢ x, and we add O¢.

Repeatedly applying this construction to the empty type 0 gives the natural numbers N.

One would like to construct higher inductive types in a similar fashion. The first difference
is that instead of starting with 0, we start with all the nonrecursive constructors. Also, in
this construction, the functor A is applied at every step. Instead we will add terms built
from the recursive constructors using previously constructed terms as arguments. Since extra
equalities might be present in the higher inductive type, we need to make identifications
during the construction. Rather than just adding points at every step, we also need to glue
the specified paths.

To understand more precisely what should be done, let us consider an example.

23:5

CVIT 2016

23:6

The Three-HITs Theorem

Inductive Ny :=
| 0:N;

| SiNQ—)NQ

| p:S(S0)=0

We build a sequence F' of approximations. The first approximation just has a constructor 0,
and after that we add a constructor for S 0 to obtain the second approximation. Continuing
this way, we ultimately arrive at the third approximation, which we call F’ 3, where we found
inhabitants 0, S 0, and S(S 0). Now we can make the first identification, and to do so, we
take the following homotopy pushout

14121

0+S5(S O)J J

F'3——F3

to obtain the actual third approximation F'3, and we continue our construction with that one.
Note that to glue during the nth step, we need refer to elements from the (n — 2)th step. So,
in order to do the identification of the nth step, inhabitants from a previous approximation
need to be used.

Due to the usage of constructor terms, one always has to go back a fixed number of steps.
By extending the syntax, it might be needed to go back an arbitrary amount of steps. This
happens in the following example.

Inductive H :=

| ¢c: H

| f:H—>H

| p:[[(n:N),f"0=0

This example might seem like it is permitted by the syntax, but actually it is not. The
function f™ is defined as a polymorphic map, and using it requires the type H as an argument.
In constructor terms one cannot use the type, and hence this definition is not allowed An
extension with such types will make the construction more complicated, and thus they will
not be considered in this paper.

Let us make this idea formal, and for that we start with a higher inductive type given as
follows.

Inductive H :=

| ¢: Anonrec — H

| Crec : Arec H — H

| pi: [[(z:B: H),ti=m; (i=1,...,m)

Note that the nonrecursive and recursive point constructors are separated in this definition.
The first approximation will be given using the nonrecursive constructors.
Inductive Huonrec :=
| C:"AOHI‘GC : Anonrec _> Hl’lOl’l[‘eC

Next we need to generate the other approximations, and that will be done in two steps.
First, we note that types can be extended with a recursive constructor.

Inductive Hyec (P : TYPE):=
| Clec : Avec P — Hyec P

A. Bauer and N. van der Weide

To do the identifications, we need to be able to interpret the constructor terms. For that we
use that each constructor terms only uses each constructor a finite amount of times, and
thus there is a maximum number n > 1 of times a constructor is used. In order to define
the approximator, we start with a type Hg,,, in which all the constructor terms can be
interpreted.

Inductive Heo, (P : TYPE):=
| term : P+ Hyee P+ ...+ Hte P — HEon P

Note that this type is actually a labeled sum. This is because H,e. P is isomorphic to
Aec P, and thus this Hg,,, P is actually P + Ayec P+ ... + AL, P. Hence, we do not need

rec

inductive types in general for the construction, but we just need to have sums and products.

If n is clear from the context, then we shall not write it down. From Lemma 11 we can
conclude that we can interpret the constructor terms in Hoon P

Now we have sufficient to define the approximator. Given is the following data

Types P,Q, R;

A map jg : Hcon @ — P;

An inclusion jgr : Hoon R — Q;

Paths pg : [[(z : Q),jq(ti) = jo(T7 2);

Paths pr : [[(z: R), jr(t; z) = jr(Ti z).
The type Happrox depends on the given data, but for clarity we will suppress it from the
notation. We start with Hoon P.

First, we need to guarantee that the added paths have the right endpoints. Note that we
have two maps t;,7; : B; P — Hcon P, and that gives the first coequalizer.

ti in
BiP—= Hoon P "5

However, this is not exactly the type we want due to coherency issues. For example, in
P we have terms using coc at most k times, so in Happrox P we have duplicates of terms
using cyec less than k times.

Remember that we we have jg : Hoon @ — P. Now we define the type Cy which is the
coequalizer of the following two arrows.

injojg inCy
Hoon Q % Hoon P ——— C
Hcon (jQO|n1)

To explain what this does, let us assume for a moment that we have one construct ¢ with
arity 1. For ¢ x with z : @, the upper map is the inclusion of Hcon @ on the first coordinate
of Hcon P. The lower map sends ¢’ z to ¢ (jg (in1 x)), so it replaces x by its image in P.

Lastly, we define Happrox, and for this we make one more identification. Instead of
identifying points, we will identify paths in this step. Since also paths are added during the
construction, there might also be duplicated paths. The resulting type should be free, so
these paths should be identified. We define a map ¢: B; R — > (z,y: P),(x = y) X (z = y)
sending z : B; R to the pair

(ti z, 7 z,ap (jg o in1) (pr ©),po (B; jr x))

Concluding the construction, we define Happrox 8s pcoeq (B; R) Cs q.
Now we can define the approximating sequence.

23:7

CVIT 2016

23:8 The Three-HITs Theorem

» Definition 9. In the setting as described, we simultaneously define a sequence of approx-
imations F': N — TYPE to H and maps f: [[(n: N),Fn — F(n+ 1) as follows.
We define F'0 = Hyonrec-
We define F'1 = Happrox taking P = F'0 and @, R = 0 and the maps are defined by
Orec.
We define F'2 = Happrox With P =F 1,Q = F0 and R = 0. We have a map Q — P
defined to be the composition of all inC with in;.
We define F'(n + 3) = Happrox With P = (F(n+2), Q = F(n+1), and R = F'n. The
maps Q - P and R — @ are defined to be the composition of inC with in; as in the
construction. The paths pg and pr are given by the path glueC from the first coequalizer.
For the maps fn: F'n — F(n+ 1), note that we always have the following sequence of maps

Fn——Hcon (F n) Ch ce Cy HApprox-

Taking P to be F'n, then we have F(n+1) = Happrox(F n), and thus the composition gives
the map F'n— F(n+1).

4 The Rules

Now we have defined an object hocolim F' f, which is supposed to interpret the higher
inductive type. In order to finish the proof of Theorem 1, we need to show that it satisfies
the rules. This means that we have to make functions which interpret the introduction rules,
and an eliminator such that the computation rules are satisfied. We will do this step by step,
and refer to lemmata in Section 5 when needed.

4.1 Introduction Rules

In order to show that this is the desired type, we first show that it has the correct introduction
rules. These come in three flavors: the nonrecursive and the recursive points, and the paths.
Let us start by defining a map Aponrec — hocolim F' f which gives the introduction rule for

the nonrecursive point constructor. Since F' 0 is defined by Hyonrec, which has a constructor

/
nonrec

c : Anonrec — Huonrec, this can be defined by the following composition.

’

A Cnonrec inc0 .
nonrec FO hocolim Ff

Next we show that we also have the recursive point constructor meaning that we have a
map Ayec (hocolim F' f) — hocolim F' f. This is slightly more complicated, and for that we
first need a lemma which says that colimits over N commute with polynomials.

» Lemma 10. The types A (hocolim F' f) and hocolim (Ao F) (A f) are isomorphic for all
polynomials A.

Proof. If A is constant then it follows from Lemma 13. For the identity it is trivial, and for
sums and products, it follows from Lemmata 14 and 15 respectively. |

Now we will construct the map Ao (hocolim F' f) — hocolim F' f, and by Lemma 10
it suffices to make a map hocolim (Ayec © F) (Arec f) — hocolim F' f. For this we use the
recursion rule of hocolim, and we start with the following string of maps

’
C

Avec(F 1) —% Hyoo(F 1)

termoing inC

Hcon(F n) —— Happrox(Fn) =F(n+1)

A. Bauer and N. van der Weide

Composing this map with inc, gives maps Ayec(F n) — hocolim F f for all n : N.
Next we need to show the commutativity of the following triangle.

Arec(f n)

Arec(F n) Arec(F(n + 1))

hocolim F' f

Before we continue, let us recall that inductive types are functors. Suppose, we have
an inductive type T with a parameter P, then a function f : P — @ gives a function
Tf:TP—TQ. Let us start with the following rectangle

!’ .
Crec termoing

Avec(Fn) ————— Hyoo(F') Hecon(F' n)

Arec(f n)J{ Hreo(f n)l Hcon(f n)l

Avec(F(n+1)) —— Hiee(F(n+1)) Hcon(F(n+1))

Crec

termoing
The left square commutes, because by definition of Hy.. f we have

Hree (f 1) (Cree®) = Croc(Arec (f 1) @).

For a similar reason, the right square commutes as well. Hence, it suffices to show that the
following diagram commutes.

Hoon(Fn) — 2 5 Fn+1)

Hcon (f ")J{ J{f(n+1)

HCOH(F(TL + 1)) T} HApprox (F(n + 1))

Note that Happrox(F(n+1)) = F(n+2) and Happrox(F'n) = F(n+1). Hence, this diagram
commutes, because of the coherency added in Cs.

Next we need to define the introduction rules for the paths. Let us start by extending
the maps t;,r; : B; (hocolim F' f) — hocolim F' f. Since homotopy colimits commute with
polynomials, it suffices to make a map hocolim (B; F') (B; f) — hocolim F' f, and for this we
need to start by defining maps B;(F n) — hocolim F' f. Note that by construction we always
have maps t;,7; : Bi(F' n) = Hcon(F n), and thus we obtain maps B;(F n) — F(n+ 1) by
composing these with inC.

Now we need to check the commutativity of the following diagram

Bi(Fn) ——— Heon(F 1) —"S—— Cy(F n) —"“— F(n + 1)

B;(f n)l J/Hcon(f n) lf’n

Bi(F(n+1)) — Heon(F(n+1)) —— Co(F(n+1)) —— F(n +2)

i

The right rectangle commutes, because the maps inC are built by composing constructors of
the coequalizer, and thus it commutes by definition. Now it computes overall due to Lemma

12 which says that inC(#;(B;(f n) z)) and inC(Hcon(f n)(t; 7)) are equal for all z : B;(F n).

In order to show that we indeed have paths p;, we use the eliminator of the homotopy
colimit. We need to show that for all = : hocolim F' f we have t; x = r; x. First, we need to

23:9

CVIT 2016

23:10

The Three-HITs Theorem

give for all z : F'n an inhabitant of ¢; (incn z) = r; (incnx). By the first identification we
have a path glueC x between ¢; z and 7; x, and thus the right path is ap (inc n) (glueC).
To finish the proof, we need to show that

(comn z).(ap (incn) (glueC x)) = ap (inc (n + 1)) (glueC ((B; (f n)) x)).
This follows from the following computation.

ap (inc (n+ 1)) (glueC ((B; (f n)) z))
=ap (inc (n+ 1)) (ap (f n) glueC z))
=ap (inc(n+1)o(fn))glueCx))
= com, (ap (incn) (glueC z))

The first step follows from the third added coherency, the second from Lemma 2.2.2 in [25],
and the last step from Lemma 16.

4.2 Elimination Rule

For the next step we define the right eliminator for hocolim F' f, so suppose that we are given
the following data

Y : hocolim F f — TYPE,

CY nonrec * H(a : Anonrec>7 Y(Cnonrec CL)7

Cy rec H(m ¢ Arec hocolim F' f), Avec Y & = Y (Croc @),

Qv : H(aj :B; H)(hy : B; Y), t; =p;x Ty

In order to make a map h : [[(z : hocolim F' f),Y x, we use the induction principle of
hocolim F' f, and for that we first need to make maps hn : [[(z: Fn),Y (incnx) for n: N.
We start by making a map h0: [[(z: F0),Y (inc0x). Recall that F 0 was defined to

/
nonrec

we have a : Aponrec. Since Cnonrec @ = INC 0 (€honrec @), it suffices to find an inhabitant of
Y (¢nonrec @), and for that we take cy nonrec . Hence, we get a map h 0.

Now suppose that we have a map hn : [[(z: Fn),Y (incn z), and our goal is to make a
map h(n+1): [[(z: F(n+1)),Y(inc (n+ 1) z). In order to do so, we will first look at how
to extend hn to a map [[(z : Hecon(F n)),Y (inc (n+ 1) (inCx)).

Let us do this in the general case. Suppose, we have a map g : P — hocolim F' f and
that we already constructed ¢ : [[(z : P),Y (g). Our goal is to extend the map into
¢ J[(x : HyeeP),Y (Cy rec), and for that we use Hyec-induction. Note that for each), x
with 2 : Arec P we have the type Y (crec (Arec g), and thus we have a type family on Hiec.
Now let @ : Apee P and y : Aiee Y x be given. Then we need to give an element of the type
Y (crec (Arec g x)) for which we take ¢y rec (Arec 9) y. We will often leave the argument
Ayec g x implicit.

Now we can also extend the map to Hg,, P, because we can define this map on each
component. On the component P it is just ¢, and on the other components we define it via
extension. We call this map h;.

Next we need to extend the map to Happrox. This is done by the universal mapping
property of the coequalizer, and that requires some steps. First, to give an paths between

be Hponree which only has a constructor ¢ : Anonrec — Huonree- S0, let us assume that

A. Bauer and N. van der Weide

the images of ¢; x and r; . Note that the images of these are tizand 7 @ respectively, and
then gy,; gives the desired paths. This gives an extension hy to Cj.

Next we check the coherency conditions, and we start with the first. We need to check
that iny(inC 2) and Hgon inC z get mapped to the same element for x : Hoon(F n) by ha.
To do so, we use a case distinction on Hgon(F 1), and for the case z = iny y with y : F n,
we have the following equations

he (inC(in1 (inC (in1 ¥)))) = hy (in1(inC(iny v))),

ho (inC(Hcon (inCoiny) (iny) = h1 (Hcon (inCoing) (ing y))
= hy (in1(inC(iny y)))

Since they are definitionally equal, we can just use the path refl.

For the other cases, we take a look at .., y, and for y we assume that hy(iny(inCy)) =
hi(Hcon (inCoiny) y). Note that at each level h is defined using the eliminator of the
coequalizer. This means that hn (inC (¢, ¥)) and cy rec(h 1 (inCy)) are equal by definition,
and thus we can make the following computations.

h (in1(inC (Ciec ¥))) = hn (inC (¢lec)
= ¢y rec(h 1 (inCy))

h1 (Heon (inCoint) (Crec ¥)) = 1 (Crec (Heon (inCoini) y))
= Cyrec (M1 (Heon (inCoing) y))
= ¢y rec (h1(in1(inCy)))
= Cyree (hn (inC).
For the second coherency we need to check that the paths ap hs (ap (f n) (p; z)) and

ap hg (p; (f nx)) are equal. Here we use several Lemmata, namely Lemma 2.2.2 from [25]
and Lemma 16. For the first path we can show that it is equal to gy,; (hn z).

ap ho (ap (f n) (p; ¢)) = ap ha (ap (inCoiny) (p; x))
= ap (hg 0inC) (ap iny (p;))
=ap hy (ap iny (p; z))
=ap (hyoiny) (p;)
=ap (hn) (p; x)
=gy, (hnz)

Since (hg 0inC) z = hy z and (hy oiny) & = hn x, we can use the path refl, and thus the
transport is the identity. For the other path we can do the same.

ap ha (pi (fnz)) = qv,i (ha (f n2))
=Qqv,i (h2 (mC in1 .’I,‘))
qy,i (hy (iny))
gy, (hnz)
To finish the proof, we need to give the image for the path com. More concretely, we

need to show that incn x and inc (n + 1) (f) are mapped to the same element. The map
f:Fn— F(n+1) is defined by the elimination rule of the coequalizer as follows

Fn—""% Heon (Fn) —<5 ... " P(n+1)

23:11

CVIT 2016

23:12

The Three-HITs Theorem

Since the map to Y was defined via the universal property of the coequalizer, it will commute
automatically. The commutativity is given by the computation rule of the coequalizer.

All in all, we have acquired a map [[(z : hocolim F' f),Y x, and this way we defined the
right eliminator for hocolim F' f. We shall call the eliminator Hind.

4.3 Computation Rules

Lastly, we show that this eliminator also satisfies the computation rules. First, we prove
that for each t : A.ec(hocolim F f) that Hind(crec t) = f;i t (Aree Hind t). Again we use that
colimits commute with polynomials.

Let n:Nand x: Apee(F n). Now we can perform the computations in an intermediate
stage of the construction, and using the computation rules we get

Hind(crec (incn z)) = Hind(inc (n + 1) (choox))
= Cyrec (Arec (incn)) (A Hind)

Hence, we can always take refl to be the path. This will also give an image for com, and thus
the computation rules for the points are satisfied.

Note that the this computation rule is a propositional equality. This is logical, because
it is proven all : A,oc(F n). However, for terms built from ¢ponrec and crec, we have a
definitional equality. This is because ¢ponrec @ for @ : Aponrec is defined to be inc 0 (a).
All the closed terms are thus inhabitants of some F' n, and since at every step the equalities

/
cnonrec

are definitional, we can conclude that for closed terms the equality is definitional.

Now we show the computation rules for the paths, and in that case we have a parameter
a : B; (hocolim F' f). By using that polynomials commute with homotopy colimits, we can
again assume that we have n : N and z : B;(F n).

apD Hind (p; (incn x)) = apD Hind (ap (inc (n + 1)) glueC z)
= apD (Hind o inc(n + 1)) (glueC)
= apD (hn) (glueC)
= q; (B; Hrec x)

5 Lemmata

» Lemma 11. Suppose, we have a constructor term t such that x : F T+t : GT which uses
at most n constructors, and that we have a map ¢, ec * Anonrec = P. Then t induces a
/

mapt: F P — HE, .. (G P) by replacing the constructors cnonrec @nd Crec bY Chonrec
respectively.

/
and Clq.

Proof. We use induction on the form of the constructor term.

t = a with a : B and B does not use T. Then we define t y = in; a.

t =z with z : F'T. Then we define ty = iny y.

t = Chonrec @ With @ : Aponrec. Then we define ¢y = iny (¢} prec @)-

t = Crec 7 With 1 : Arec T where r uses at most n — 1 constructors. By induction we have

amap7: F P — Aec Hiypr. Then we define Ty = clo (T 7).

For the rules for the projection, pairing and injection it is trivial. |
» Lemma 12. Suppose, we have a constructor term t such that x : FT +t: GT which
uses at most n constructors, and that we have a map €y rec : Anonrec = Q. Furthermore,

we assume that we have a map f : Q — P Then for all x : F P the terms t(F f x) and
(Heon o G) f (tz) are equal.

A. Bauer and N. van der Weide

Proof. Again we use induction on the constructor term.
t = a with a : B and B does not use T. Then we have G P = B, and thus ¢(F f x) = a.
On the other hand, we have,

(Heon©oG) f(tz) =G fa=a.
t=x withz: FT. Then G P = F P, and thus t{(F f z) = in1(F f z). Also,
(Hoon 0 G) f (F) = (Hoon 0 G) f (iny) = im(G f 2) = imy (F f)
= Caonrec @ With @ : Anonrec. Then G P = P, and thus E(F f) = iny (f(chymee @)). Also,

(HCon o G) f (% :E) = HCOH f (inl(cilonrec a)) = inl(f(cilonrec a))

t = Cree T With 7 : A,ec T where r uses at most n — 1 constructors. The induction
hypothesis in this case is that Hgon f (T 2) = F(F f x). Then again G P = P, and thus
t(F f x) = ch. (T(F f x)). Furthermore,

(HCOH © G) f (E J") = Hcon f (C;ec (F J})) = ci‘ec (Hcon f (F I)) = C:ec (?(F f J)))
For the rules for the projection, pairing and injection it is trivial. |
» Lemma 13. The type hocolim (An.A) (An.1d) is isomorphic to A.

Proof. We define the map f : A — hocolim (An.A) (An.Id) to be inc 0. Next we define
g : hocolim (An.A) (An.Id) — A by hocolim recursion. We send incn a to a, and then the
required diagrams commute by reflexivity. The proof that these maps are mutual inverses is
straightforward but tedious, so we refer the reader to the accompanying Coq code [10]. <

» Lemma 14. Colimits commute with coproducts, so hocolim (G1 + G3) (g1 + g2) and
hocolim G g1 + hocolim G2 g2 are isomorphic.

Proof. This one is not difficult either, so we will be brief and refer the reader to [10] for
details. We start by making a map

hocolim (G1 + G2) (g1 + g2) — hocolim G g1 + hocolim G4 gs.

This map is defined by recursion over the colimit, so take any n : N and « : G; n. Then the
image of incn (in; x) is defined to be in;(incn x), and the image of comn (in; x) is defined by
ap in; (com G; g; n).

For the map in the other direction, we need to make

hocolim G; g; — hocolim (G1 + G2) (91 + g2)-
We send incn z to incn (in;) and comn x to comn (in;). <
» Lemma 15. Colimits commute with products.

Proof. This follows from a more general result which says that colimits commute with sigma
types which is proven in [12, 13] under ‘commutation with sigmas’. <

» Lemma 16. Given are types A, B and functions f,g : A — B such that we have an
inhabitant e : f = g. Furthermore, assume that we have a path p : x =y where x and y are
terms of type A. Then for all we have a path

e« (ap fp)=ap gp.

23:13

CVIT 2016

23:14

The Three-HITs Theorem

All in all, we have an inhabitant of the type

[[(f.9: A= B)e: f=g)(z.y: A)p:x=1y).e.(ap fp) =ap gp
where A, B : TYPE.

Proof. Since this statement is universally quantified over p, we can apply path induction.
Assuming p to be refl, the map e, is the identity, and in that case it holds. Hence, it follows
by path induction. |

» Lemma 17. Again we are given types A, B, functions f,g: A — B, an inhabitante: f = g,
and a path p: fx = fy with x,y: A. Then we have a path

exp=(edz) tepe(edx)
Formally, this means that for A, B : TYPE we have an inhabitant of the type
[[(f.9: A= B)e: f=g)ay: Ap: fo=Fy),e.p= (D) eps(cOy).

Proof. Again we use path induction on e, so we assume that e = refl. Then e [x = refl and
e Oy = refl, so the right side is equal to p. Also, in this case e, is the identity map, so the
left side also is p. |

6 Conclusion and Further Work

MOVED FROM BEGINNING: A possible extension would be to use arbitrary containers as
in [1], but we shall refrain to do so. With that extension the given proof requires the axiom
of choice which generally does not hold in type theory.

Higher inductive types can thus be constructed if we have the interval, homotopy pushout
and homotopy colimits. Since the construction is done in homotopy type theory without
assuming extra axioms, the proof is constructive. Notice that the only inductive types we
needed were the sum and product types rather than the general class of W-types or those
described inductive schemes. Hence, we can also deduce the existence of all inductive types
from this theorem if we just have sums, products, and the three HITs.

There is still some work which remains to be done. First of all, we expect that this
theorem will have applications in the semantics and the metatheory of higher inductive types.
There are already several interpretations of homotopy type theory in abstract homotopy
theory [5, 7, 11, 14, 18]. Rather than using the full-blown definition one could instead just
look at a small number of cases, and that could simplify checking whether all higher inductive
types exist in some model. Also, the theorem could also be used for generic programming
with higher inductive types [4]. If we know how a function is defined for the interval, the
homotopy pushout, and the homotopy colimit, then we know how it is defined for all higher
inductive types.

Furthermore, there might be some interesting theoretical possibilities for the Three-HITs
Theorem. We expect that it can be generalized if a syntax of higher inductive types with
a higher dimensional paths is given. If constructor terms are used, then most of the proof
might even be reusable.

The work of Sojakova [24] relates higher inductive types to homotopy initial algebra.
Since initial algebra are made as a colimit, it could be that this construction and homotopy
initial algebras are related in some way. Also, the work by Altenkirch et al. [3] allows more
general constructors which is not allowed in the syntax used in this paper. If the proof can be
extended somehow to also allows these constructors, then that would pave the way towards
constructive semantics of QIITs.

A. Bauer and N. van der Weide

—— References

1

10

11

12

13

14

15

16
17

18

19

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing Strictly
Positive Types. Theoretical Computer Science, 342(1):3-27, 2005.

Jifi Addmek. Free Algebras and Automata Realizations in the Language of Categories.
Commentationes Mathematicae Universitatis Carolinae, 15(4):589-602, 1974.

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, and Fredrik Nordvall Forsberg. Quo-
tient Inductive-Inductive Types. arXiv preprint arXiv:1612.02346, 2016.

Thorsten Altenkirch and Conor McBride. Generic Programming within Dependently Typed
Programming. In Generic Programming, pages 1-20. Springer, 2003.

Peter Arndt and Krzysztof Kapulkin. Homotopy-Theoretic Models of Type Theory. In
International Conference on Typed Lambda Calculi and Applications, pages 45—60. Springer,
2011.

Steve Awodey, Nicola Gambino, and Kristina Sojakova. Inductive Types in Homotopy
Type Theory. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in
Computer Science, pages 95-104. IEEE Computer Society, 2012.

Steve Awodey and Michael A Warren. Homotopy Theoretic Models of Identity Types. In
Mathematical Proceedings of the Cambridge Philosophical Society, volume 146, pages 45-55.
Cambridge Univ Press, 2009.

Henning Basold, Herman Geuvers, and Niels van der Weide. Higher Inductive Types
in Programming. Journal of Universal Computer Science, 23(1):63-88, jan 2017. http:
//www.jucs.org/jucs_23_1/higher_inductive_types_in.

Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau,
and Bas Spitters. The HoTT Library: A Formalization of Homotopy Type Theory in CoQ.
In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2017, Paris, France, January 16-17, 2017, pages 164-172, 2017.

Andrej Bauer and Niels van der Weide. Accompanying Lemmas of Three-HITs Theorem in
CoQ. https://github.com/nmvdw/Three-HITs, 2016.

Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in Cubical
Sets. In 19th International Conference on Types for Proofs and Programs (TYPES 2013),
volume 26, pages 107-128, 2014.

Simon Boulier. Colimites et Structure de Modele en Théorie des Types Homo-
topique. http://perso.eleves.ens-rennes.fr/~sboul434/documents/rapport_de_
stage_M2_Nantes.pdf, 2015.

Simon Boulier. Colimits in HoTT. https://homotopytypetheory.org/2016/01/08/
colimits-in-hott/, 2016.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. arXiv preprint arXiv:1611.02108,
2016.

Floris van Doorn. Constructing the Propositional Truncation using Non-Recursive HITs.
In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
pages 122-129. ACM, 2016.

Peter Dybjer. Inductive Families. Formal aspects of computing, 6(4):440-465, 1994.

Peter Dybjer and Anton Setzer. Induction—Recursion and Initial Algebras. Annals of Pure
and Applied Logic, 124(1-3):1-47, 2003.

Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Founda-
tions (after Voevodsky). arXiv preprint arXiv:1211.2851, 2012.

Nicolai Kraus. The General Universal Property of the Propositional Truncation. arXiv
preprint arXiv:1411.2682, 2014.

23:15

CVIT 2016

http://www.jucs.org/jucs_23_1/higher_inductive_types_in
http://www.jucs.org/jucs_23_1/higher_inductive_types_in
https://github.com/nmvdw/Three-HITs
http://perso.eleves.ens-rennes.fr/~sboul434/documents/rapport_de_stage_M2_Nantes.pdf
http://perso.eleves.ens-rennes.fr/~sboul434/documents/rapport_de_stage_M2_Nantes.pdf
https://homotopytypetheory.org/2016/01/08/colimits-in-hott/
https://homotopytypetheory.org/2016/01/08/colimits-in-hott/

23:16

The Three-HITs Theorem

20

21

22

23

24

25

Nicolai Kraus. Constructions with Non-Recursive Higher Inductive Types. In Proceedings
of the 81st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 595-604.
ACM, 2016.

Dan Licata. Another Proof That Univalence Implies Func-
tion Extensionality. https://homotopytypetheory.org/2014/02/17/
another-proof-that-univalence-implies-function-extensionality/, 2014.
Saunders Mac Lane. Categories for the Working Mathematician, volume 5. Springer Science
& Business Media, 2013.

Mike Shulman. An Interval Type Implies Function Ex-
tensionality. https://homotopytypetheory.org/2011/04/04/
an-interval-type-implies-function-extensionality/, 2011.

Kristina Sojakova. Higher Inductive Types as Homotopy-Initial Algebras. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 31-42, 2015.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
https://homotopytypetheory.org/book

	Introduction
	A definition of HITs
	The Approximator
	The Rules
	Introduction Rules
	Elimination Rule
	Computation Rules

	Lemmata
	Conclusion and Further Work

